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Course Reminders!

• Submit the weekly reflection questions to MarkUs!

• Sign up for a paper presentation slot!

• Homework 1 due next week!

• Think about your projects!

https://markus.teach.cs.toronto.edu/csc2541-2020-01/
https://docs.google.com/spreadsheets/d/1au3A_T1WHinRu041ebTLU31xpu5pbq3CyJ1I9ysfogw/edit?usp=sharing
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Logistics

• Course website:
https://cs2541-ml4h2020.github.io 

• Piazza: 
https://piazza.com/utoronto.ca/winter2020/csc2541

• Grading:
• 20% Homework (3 problem sets)
• 10% Weekly reflections on Markus (5 questions)
• 10% Paper presentation done in-class (sign-up after the first lecture)
• 60% course project (an eight-page write up)

https://cs2541-ml4h2020.github.io
https://piazza.com/utoronto.ca/winter2020/csc2541
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Schedule

Jan 9, 2020,   Lecture 1: Why is healthcare unique?
Jan 16, 2020, Lecture 2: Supervised Learning for Classification, Risk Scores and Survival
Jan 23, 2020, Lecture 3: Clinical Time Series Modelling
Jan 30, 2020, Lecture 4: Causal inference with Health Data --- Dr. Shalmali Joshi (Vector)

Problem Set 1 (Jan 31 at 11:59pm)
Feb 6, 2020,   Lecture 5: Fairness, Ethics, and Healthcare  

Project proposals (Feb 6 at 5pm) 
Feb 13, 2020, Lecture 6: Deep Learning in Medical Imaging -- Dr. Joseph Paul Cohen (MILA)

Problem Set 2 (Feb 14 at 11:59pm)
Feb 20, 2020, Lecture 7: Clinical NLP and Audio -- Dr. Tristan Naumann (MSR)
Feb 27, 2020, Lecture 8: Clinical Reinforcement Learning
Mar 5, 2020,   Lecture 9: Interpretability / Humans-In-The-Loop --- Dr. Rajesh Ranganath (NYU)

Problem Set 3 (Mar 6 at 11:59pm)
Mar 12, 2020, Lecture 10: Disease Progression Modelling/Transfer Learning -- Irene Chen (MIT)
Mar 19, 2020, Project Sessions/Lecture
Mar 26, 2020, Course Presentations
April 4, 2020,  Course Presentations

Project Report (Apr 3 at 11:59pm)
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Outline

1. What’s Time Got To Do With It?
a. Missingness
b. Representation

2. Case Study 1: MTGPs for Mortality Prediction and TBI

3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. Project Discussion
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Problem: Hospital decision-making / care planning

Observe Patient Data “Real-time” Prediction
 
Of {Drug/Mortality/Condition}

By Gap Time 

Before the Doctor Acted?
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How Do We Handle Time?

• An image gives a snapshot of an object, but a video dictates form!

• We want to model patient risks/treatments/outcomes as they live.

• Strategies:
• Amortize - Make features out of mean, min, max, etc. 
• Stack - Inputs of fixed size, and concatenate.
• Deal - Use a method that addresses dynamics.

• Focus on dealing in this lecture. 
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Missing Data Details
Data can be missing according to several regimes:

● Missing completely at random (MCAR)
○ The observed pattern of missingness is independent from the observed or missing values.

● Missing at random (MAR)
○ The observed pattern of missingness is independent from the missing values (but may depend 

on the observed values).

● Missing not at random (MNAR)
○ All bets are off.

Healthcare lives here.



Missing Data is Confounding



How do we handle missing data?



Imputation
1. Statistical Timeseries Forecasting: ARMA/ARIMA/ARIMAX, etc.

2. Easy Baselines: Constant infilling, Sample & Hold (+ indicators), Interpolation

3. Traditional Imputation: MICE/3D-MICE, MissForest, Matrix/Tensor Completion

4. Gaussian Processes

5. Advanced neural methods (GRU-D, GANs, etc.)



Imputation

Prasad, Niranjani, et al. "A reinforcement learning approach to weaning of mechanical ventilation in intensive care units." 
arXiv preprint arXiv:1704.06300 (2017).



GANs for Imputation



GANs for Imputation

Left: Jo, Youngjoo, and Jongyoul Park. "SC-FEGAN: Face Editing Generative Adversarial Network with User's Sketch and Color." arXiv preprint arXiv:1902.06838 (2019).
Middle: Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
Right: https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/


GAIN: Generative Adversarial Imputation



Imputation Papers
1. GAIN: https://arxiv.org/pdf/1806.02920.pdf
2. GRU-D: https://www.nature.com/articles/s41598-018-24271-9
3. GP Imputation: https://arxiv.org/pdf/1704.06300.pdf
4. Interpolation-prediction network: https://arxiv.org/pdf/1812.00531.pdf 

https://arxiv.org/pdf/1806.02920.pdf
https://www.nature.com/articles/s41598-018-24271-9
https://arxiv.org/pdf/1704.06300.pdf
https://arxiv.org/pdf/1812.00531.pdf


Opportunities
1. Improved imputation methods. How do forecasting, GP, or adversarial 

methods compare to GRU-D/interpolation prediction network? Can we 
incorporate uncertainty offered by GPs usefully into downstream tasks? Can 
we make other models offer uncertainty?

2. Can we model the decision process by which clinicians choose what to 
measure and what to omit? How would this be helpful in downstream tasks? 
Can this help account for the MNAR nature of healthcare missingness?

3. Can we control for the confounding effects of missingness? Can we learn a 
model on underlying physiology from retrospective, care-byproduct data?
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Representation: Why do we care?



Representations define a notion of “similarity”

Closer in “Conceptual Space” Closer in “Pixel Space”



Representations learn a notion of similarity

Conroy, Bryan, Minnan Xu-Wilson, and Asif Rahman. "Patient Similarity Using Population Statistics and Multiple Kernel Learning." Machine Learning for Healthcare Conference. 2017.



Representations can stabilize changing data

Nestor, Bret, et al. "Rethinking clinical prediction: Why machine learning must consider year of care and feature aggregation." Machine Learning for Healthcare Conference. 2019



Representations can stabilize changing data

Gong, Jen J., et al. "Predicting clinical outcomes across changing electronic health record systems." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining. ACM, 2017.



Representations can join disparate modalities

Hsu, Tzu-Ming Harry, et al. "Unsupervised multimodal representation learning across medical images and reports." arXiv preprint arXiv:1811.08615 (2018).



DeepCluster: Why bother with labels?

Caron, Mathilde, et al. "Deep clustering for unsupervised learning of visual features." Proceedings of the European Conference on Computer Vision (ECCV). 2018.



Representation Learning in Action: Multitask Learning



Representation Learning in Action: Clustering

Choi, Edward, et al. "GRAM: graph-based attention model for healthcare representation learning." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. ACM, 2017.



Representation Learning in Action: Clustering

Dhamala, Jwala, et al. "Multivariate Time-Series Similarity Assessment via Unsupervised Representation Learning and Stratified Locality Sensitive Hashing: Application to Early Acute Hypotensive 
Episode Detection." IEEE Sensors Letters 3.1 (2019): 1-4.



Representation Learning in Action: Anomaly Detection

Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International Conference on Information Processing in Medical Imaging. 
Springer, Cham, 2017.



Representation Learning in Action: Anomaly Detection



Key Points for Healthcare
● Representations can normalize.
● Generalization to unseen tasks is critical (e.g., patient subtyping).
● Representations can aid in interpretability.
● Representations can span many modalities.



40

Outline

1. What’s Time Got To Do With It?
a. Missingness
b. Representation

2. Case Study 1: MTGPs for Mortality Prediction and TBI

3. Case Study 2: RNNs/CNNs for Intervention Onset Prediction

4. Project Discussion



41

Remember This? Topics Improves Mortality Prediction

• Forward-facing ICU mortality prediction with notes. 

• Latent representations add predictive power.

• Topics enable accurately assess risk from notes.
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Add Information About Evolution of Signals

• Learn a new latent representation to evaluate multi-dimensional function 
similarity (θ).

MTGP models capture 
movements within and 

between signals. 

Transform signals into MTGP 
hyperparameter representation.

Compare patient similarly in the new 
representation. 
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Learning Single Task Gaussian Processes (STGP)

• Model each signal as a GP task with mean and covariance functions.

• GP’s commonly used to predict at new indices.

• Learn the parameters (θ) of the kernel from data.
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Single vs. Multi-task Gaussian Processes

•Assume we have m sets of: 
• Inputs Xi

• Temporal covariance hyperparameters θi
t

• Estimated functions fi

• Noise terms σi

• Outcomes yi

• We can train m single-task Gaussian process 
(STGP) (a) or a multi-task Gaussian process (MTGP) 
to relate the m tasks through all prior variables, with 
the tasks’ labels l and similarity matrix θc (b).
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Learning MTGPs As Representations

•Use an MTGP representation to relate m inputs through Kt and Kc.

[1] Bonilla, Edwin V., Kian M. Chai, and Christopher Williams. "Multi-task Gaussian process prediction." Advances in neural information processing systems. 2007.
[2] Carl Rasmussen’s minimize.m was used for gradient-based optimization of the marginal likelihood.  

Movement within a signalMovement between signals
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Estimating Signal in Traumatic Brain Injury Patients

•Intracranial pressure (ICP) and mean arterial blood pressure (ABP) are 
important indicators of cerebrovascular autoregulation (CA) in traumatic Brain 
Injury (TBI) patients. 

• CA sustains adequate cerebral blood flow1 and impairment risks secondary 
brain damage and mortality.2 

• CA is assessed using a sliding window Pearson’s correlation between the 
ICP and ABP – the Pressure-Reactivity Index (PRx)3.

[1] Werner, C., and K. Engelhard. "Pathophysiology of traumatic brain injury." British journal of anaesthesia 99.1 (2007): 4-9.
[2] Hlatky, Roman, Alex B. Valadka, and Claudia S. Robertson. "Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation." Neurosurgery 57.5 (2005): 917-923.
[3] Czosnyka, Marek, et al. "Continuous assessment of the cerebral vasomotor reactivity in head injury." Neurosurgery 41.1 (1997): 11-19.
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TBI Estimation Methodology

•PRx isn’t calculated when either signal is 
contaminated - evaluate STGPs/MTGPs for 
interpolation, and MTGPs for PRx estimation.

•Collected data from 35 TBI patients with 24+ hours of 
ICP and ABP recordings sampled every 10 seconds. 

• Selected 30 ten-minute windows where ICP/ABP 
were free from artifacts and missing values from each 
patient recording; randomly introduced artificial gaps in 
both signals (x’s).
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MTGP Representations Improve Signal Forecasting 
and Outcome Prediction

•MTGPs outperform STGPs in 
signal reconstruction.

•Automatically estimate 
cerebrovascular autoregulation.

* Final cohort consisted of 10,202 patients, with 313,461 notes.

Performance on Signal 
Forecasting

Performance on Mortality 
Prediction 

•MTGP hyperparameter 
representations improve 
short-term mortality prediction.
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Can We Predict Interventions?

• 34,148 ICU patients from MIMIC-III
• 5 static variables (gender, age, etc.)
• 29 time-varying vitals and labs (oxygen saturation, lactate, etc.)
• All clinical notes for each patient stay
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Raw Physiology vs “Words” Embedding

• Many values are missing!
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Raw Physiology vs “Words” Embedding

• Many values are missing!
• Z-score existing variables, rounding to the nearest int.
• Convert each z-score into its own binary column.

-1 A row of all zeros indicates 
a missing value at that hour.
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Many Ways to Model, What Do We Learn?

55

LSTM CNN

2 Layer/512 node LSTM with sequential hourly 
data; at end of window, use the final hidden 
state to predict output.

CNN for temporal convolutions at 3/4/5 hours, 
max-pool, combine the outputs, and run through 2 
fully connected layers for prediction.

SSAM

Learn model parameters 
over patients with 
variational EM. 

Logistic regression
(with label-balanced 
cost function)

... ... ...

...... ... ...
Infer hourly distribution over 
hidden states with HMM DP 
(fwd alg.).

... ......
... ...... ...

Predict onset 
in advance
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To model sequences, we need:

1. To deal with variable-length sequences
2. To maintain sequence order
3. To keep track of long-term dependencies
4. To share parameters across the sequence

Let’s turn to recurrent neural networks.

MIT 6.S191 | Intro to Deep Learning | IAP 2018
Slides courtesy of Harini Suresh +

RNNs on Sequences
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input hidden output

MIT 6.S191 | Intro to Deep Learning | IAP 2018

Example Network
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input hidden output

let’s take a look at 
this one hidden unit

MIT 6.S191 | Intro to Deep Learning | IAP 2018

Example Network



RNNS remember their previous state: 

t = 0

x0 : “it” W

U

s0

s1

MIT 6.S191 | Intro to Deep Learning | IAP 2018



RNNS remember their previous state: 

t = 1

x1 : “was” W

U

s1

s2
1
2

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

time

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

time

notice that we use the 
same parameters, 
W and U 

MIT 6.S191 | Intro to Deep Learning | IAP 2018



“Unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

time

sn can contain 
information from all 
past timesteps

MIT 6.S191 | Intro to Deep Learning | IAP 2018



Why do LSTMs help? 

1. Forget gate allows information to pass through 

unchanged 

2. Cell state is separate from what’s outputted 

3. sj depends on sj-1 through addition!  
→ derivatives don’t expand into a long product!

MIT 6.S191 | Intro to Deep Learning | IAP 2018
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Predict Onsets of Interventions

• Delay prediction by 6-hour gap time.

• Attempt to predict onest, weaning, staying off, staying on. 
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NNs Do Well; Improved Representation Helps
A

re
a-

un
de

r-
R

O
C

Representations with 
“physiological words” for 
missingness significantly 
increased AUC for 
interventions with the 
lowest proportion of 
examples.

Deep models perform well 
in general, but words are 
important for ventilation 
tasks.
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Feature-Level Occlusions Identify Per-Class Features
D

ec
re

as
e 

in
 A

U
C

Physiological data 
were more 
important for the 
more invasive 
interventions.

Clinical note topics 
were more important 
for less invasive 
tasks.
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Convolutional Filters Target Short-term Trajectories

Higher diastolic blood 
pressure, respiratory 
rate, and heart rate, 
and lower oxygen 

saturation : 
Hyperventilation 

Most differentiated features of 10 real patient trajectories that are highest/lowest activating for each task. 

Decreased systolic blood 
pressure, heart rate and oxygen 

saturation rate : 
Altered peripheral perfusion or 

stress hyperglycemia 

Decreased creatinine, 
phosphate, oxygen 

saturation and blood 
urea nitrogen : 

Neuromuscular 
respiratory failure 
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Convolutional Filters Target Short-term Trajectories

● “Hallucinations” give insight into underlying properties of the 
network. 

● The trajectories are made to maximize the output of the model, (do 
not correspond to physiologically plausible trajectories).

Blood pressure drops are maximally 
activating for vasopressor onset.

Respiratory rate decreasing is maximally 
activating for ventilation onset.
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